US009483202B2

a2 United States Patent

Barve

US 9,483,202 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) RAPID CLONING OF DATA OBJECTS
BACKED BY NON-CONTIGUOUS EXTENTS

(71)
(72)

Applicant: NetApp, Inc., Sunnyvale, CA (US)
Inventor: Anagha Barve, Sunnyvale, CA (US)
(73)

")

Assignee: NetApp, Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 330 days.

@
(22)

Appl. No.: 13/947,790

Filed: Jul. 22, 2013

(65) Prior Publication Data

US 2013/0339645 Al Dec. 19, 2013

Related U.S. Application Data

Continuation of application No. 12/965,760, filed on
Dec. 10, 2010, now Pat. No. 8,688,636.

(63)

Int. CL.
GO6F 7/00
GO6F 17/30
GO6F 3/06
GO6F 11/14
GO6F 1120
GO6F 9/455
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
GOGF 3/065 (2013.01); GOGF 3/0614
(2013.01); GOGF 3/0683 (2013.01); GOGF
9/45558 (2013.01); GOGF 11/1456 (2013.01);
GOGF 11/2082 (2013.01); GOGF 17/30067
(2013.01); GOGF 17/30575 (2013.01); GO6F
17/30581 (2013.01); GOGF 17/30584
(2013.01); GO6F 2009/45562 (2013.01); GO6F
2009/45579 (2013.01)

00— Rapid Cloning

Racele reuest i lone s soure dea bt

(58) Field of Classification Search
CPC ..ccovvvern GO6F 17/30575; GO6F 17/30067,
GO6F 17/30581; GO6F 17/30584
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,996,361 B1* 82011 Shah GOGF 17/30073
707/626
8,151,263 Bl 4/2012 Venkitachalam et al.
8,352,938 B2* 1/2013 Huntcceovenee. GOG6F 9/4856
718/1
2003/0194208 Al 10/2003 Inoue et al.
2006/0101189 Al 5/2006 Chandrasekaran et al.
2007/0260830 Al 11/2007 Faibish et al.
2008/0134178 Al 6/2008 Fitzgerald et al.
2008/0184225 Al 7/2008 Fitzgerald et al.
2009/0094603 Al 4/2009 Hiltgen et al.
2011/0154331 A1* 6/2011 Ciano GOGF 9/45558
718/1
2011/0173401 A1* 7/2011 Usgaonkar GOG6F 3/0608
711/162
2012/0016840 Al* 1/2012 Lin ..ccocovvvvenens GOGF 11/2097
707/626
2012/0023292 Al 1/2012 Saito et al.
2012/0066183 Al 3/2012 Adkins et al.
2014/0229443 Al* 82014 Picken GOGF 17/03174

707/639
* cited by examiner

Primary Examiner — Loan T Nguyen
(74) Attorney, Agent, or Firm — Cooper Legal Group,
LLC

(57) ABSTRACT

A request is received to clone a source data object. A source
block range of the source data object in a source logical
storage unit is determined. An empty data object in the
destination logical storage unit is created. A destination
block range of the empty data object in the destination
logical storage unit is determined. The source block range is
mapped to the destination block range. The source data
object is cloned based on the mapping.

20 Claims, 10 Drawing Sheets

|

Determing block range of amety daid abject In
destination loglcal storage unk
30

Clone sour ros daia object In saurce logical
storage unit{o emply data cblect in dastnslion
Togial rsgeutuesedon maing

U.S. Patent Nov. 1, 2016 Sheet 1 of 10 US 9,483,202 B2

Storage
Device
130

7

100 Host
"ol Machine
a 110

Storage System

S o ®

Storage
Device
150

H

T

US 9,483,202 B2

Sheet 2 of 10

Nov. 1, 2016

U.S. Patent

ore

X

wisys/ie abelols yIomeN
GGC NN |

ali4 pauoiy
10 afiuey ¥ooig

09
B4 BOUINCS
jo abuey yooig

0S¢
weysis

2 ld

§ne

X

auiyue|r 1SoH

ell4 Psuo|)

r

B4 BUINGT

Bunesado

1oniog 96eI0NS | legg

Jonieg sbeioig

alemyes
uonezZIenyiiy,

a2.emyos
Buiuojsy pidey

012
waysfg Bunesedo
suLoBW JSOH

00e

U.S. Patent Nov. 1, 2016 Sheet 3 of 10 US 9,483,202 B2

Memory
300

Operating System
310

Biock Range Determirusr
320

Data Object Creaior

Data Cloner
340

Source Data {ibject
350

Cloned Data Object
360

FIG. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 10 US 9,483,202 B2

400 - .
B | Rapid Cloning ;_)

v

Receive request to clone a source data object

rli\
~
~Host of source ;;x = Mayg destination logical storage unit io host of
ébject same as host of > No e source data object
\;tastlnatlon for clone2#" 415

N

Determine block range of source data object in
source logical storage unit <

420
Create empty data object in destination logical
storage unit

425

v

Deteimine block range of empty data object in
destination logical storage unit

430

v

Map source block range to destination block
range
435

¥

Clone source data object in sourcs iogical
storage unit to empty data object in destination
logical storage unit based on mapping
440

i
vy
N

i
ost of source da‘t}\ Rkiag destination logical storage unit to desired
object same as host jfi>“ No s destination host for clone
C 450

T tlnatlon for clone2
S e

Yes

End)%

w"“ﬂﬁ

FIG. 4

U.S. Patent

Nov. 1, 2016 Sheet 5 of 10

500 ~.

*—&C Block Range Dietermination

e
A1

v
v

810

US 9,483,202 B2

{

Detenmine extents associated with the data object in the host file system

vy

Determine starting cffset on the storage device where the volume begins

Ty

LBA Block Count
Determination Loop Siart
530

H
N

v

Generate a product of logical cluster number for each extent and number
of sectors per cluster and add the result to starting offset

| e—

MH}

940

v

Datermine binck count
554

¥
[LBA Block Count Dstermination

Loop: End

]
]
!

! |
C

./

U.S. Patent

Nov. 1, 2016 Sheet 6 of 10

e o
L Block Mapping ;}

y

600 T

US 9,483,202 B2

Perform initializaticn
605

=

More source ranges in scurce block ranges
array or more destination rangas in
destination block ranges array loop start
610

¥

=

and a number of blocks i clone

B1b

Compute a cloning range consisting of a source LBA, a destinaiion LBA,

Y

620

Include the computed cloning range in a st of tioning ranges to be clored

“Compare sourcs bytaé

=, and destination bytes o~

N~ @
X fff’

Source byies = Destination byies

Source bytes < Destination byvtes

Source bytes > Destination bytes

Y

¥

Advance to next source LBA
element in source block
ranges array
830

Advance to next source LBA alement

in sourse block ranges array and

riext destination LBA slement in
destination block ranges array

Advance to next destination
LBA element in destination
block ranges array
£60

645

v

v

v

Update source bytes and
destination bytes for source
bytes equal to destination bytes
650

Update source bytes and
destination bytes for source
bytes less than destination
bytes

destination bytes for source bytes

Update source bytes and

greater than destination bytes
865

635

v

v

v

Mark source range flag
complete and destination
range flag incomplete

Mark source range flag
complete and destination range
flag compiste

Mark source range flag incompleie

and destination range flag
complete
670

v

array or more destination ranges in
destination block ranges array joop end

Mare source ranges in source biock ranges

FIG. 6

US 9,483,202 B2

Sheet 7 of 10

Nov. 1, 2016

U.S. Patent

VL Ol

YO.L.
gbelols

c0l > a0l Lo
uaiD , lanseg abelois y
0cZ o2
:g
i I.\%

lanjeg abelolg

el

0L

US 9,483,202 B2

Sheet 8 of 10

Nov. 1, 2016

U.S. Patent

gl 'old

7 abeiolg

%

\. /

Ll epoN
X VL x,_\ izl
/ 8ad 1soy-\
gl
m_w._ﬁm;&uﬁ
N,
4!;

™

%,“ i il j_.,. :%‘,:))g‘,
BT §e7 ouae pY =T
Buiyonms Buopmsg ,tgﬁw |
Bisnio 19§D HOMEN
/ \ yd N ,\,g N
f r ri T \.z_,
\
Vel 91z |
SInpow-g 9|npoL-}y
| %L 7Tl
1soy-in
T -
) 0L oPoN
P

0L
wenn

US 9,483,202 B2

Sheet 9 of 10

Nov. 1, 2016

U.S. Patent

0.8
abeioie

woi4/ol

|

ov8
apdepy abeing

8 Old

Ggze
suged
Bupyonmg
wiol|jo
m 0cg laydepy J
SEANTY SN m

riilm»:i!.ii

0cg
NICAET
wol4/o1

:

0z8

sgrdepy MioaaN

y

l_,_:,_%

088

slosuo) s

_,,,_u\::

4%
wisjsAg Bunesady

018
Rows|y

208
10858001

US 9,483,202 B2

Sheet 10 of 10

Nov. 1, 2016

U.S. Patent

H3/H3S
JOVHOLS

<

6 9l

§%5 WILSAS SIOIAYIS ¥ILSNTO E_%m.z
—— "
576 ZT6
o 3300V VI3 e
. vIa3n
WALSAS HIAIG %SIT
Al di
RS p— TR ; wrz |
! s ;mu,. WN\@ i 3 m v
WILEAS QY " o f/ o I -
| . 3INIONT
566 ¥INO) Qldv %3 3 100aL
108! A
096 WILEAS 3114 = |z | o
Jnaow | dLH (sS40 | san | 8IB
g EEREVNESS S4vd
7 F0VAEANIZ0 | .- 3
"e r B0TE JOVAMILNI 40
4 - % }
— 028 Y
036 IINCOW-C 1090.L0Nd 43 016 JINCOW-N ®,
008

US 9,483,202 B2

1
RAPID CLONING OF DATA OBJECTS
BACKED BY NON-CONTIGUOUS EXTENTS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
application Ser. No. 12/965,760, filed Dec. 10, 2010.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the soft-
ware and data as described below and in the drawings
hereto: Copyright© 2010, NetApp, Inc. All Rights Reserved.

FIELD OF THE INVENTION

This invention relates generally to storage systems, and
more particularly to rapid cloning of virtual machines in a
storage system.

BACKGROUND

A virtual machine is the representation of a physical
machine by software. A virtual machine has its own set of
virtual hardware (e.g., random access memory (RAM),
central processing unit (CPU), network interface card (NIC),
hard disks, etc.) upon which an operating system and
applications are loaded. The virtual machine operating sys-
tem sees a consistent, normalized set of hardware regardless
of the actual physical hardware components. In a virtualized
environment, a physical host machine (e.g., a computer)
runs virtualization software such as a hypervisor and
abstracts physical hardware (e.g., processors, memory, stor-
age and networking resources, etc.) to be provisioned to one
or more virtual machines. Storage on a storage system is
mapped to the physical host machine such that the physical
host machine can use the storage.

A guest operating system (e.g., Windows™, etc.) may be
installed on each of the virtual machines. The virtualization
software presents the physical hardware of the host machine
as virtual hardware to the guest operating system and
applications running in the guest operating system. A user
may access the virtual machine to perform computing tasks
as if it were a physical machine. For example, a user may
want to rapidly clone a file, or data object.

The storage system includes an operating system, such as
NetApp® Data ONTAP™. The storage system operating
system provides single instance storage (sis) clone function-
ality, which can be used to create a clone of an entire Logical
Unit Number (LUN). The storage system operating system
can provide the capability to perform sub LUN cloning by
providing as input a logical block address (LBA) range to be
cloned and a block range of the destination to store the clone.
However, when the entity to be cloned is a file present on a
file system such as New Technology File System (NTFS),
the LBA range of the file is not known. Furthermore, the
cloned blocks in the destination are not recognized as a file
by the destination NTFS.

Rapid cloning capabilities provided by virtual machine
managers such as Windows System Center Virtual Machine

10

15

20

25

30

35

40

45

50

55

60

65

2
Manager® (SCVMM) use Windows Background Transfer
Service® (BITS) technology and do not provide significant
performance gain over traditional file copy. Moreover, vir-
tual machine managers’ rapid cloning is time intensive and
uses a significant amount of memory.

SUMMARY

Rapid cloning of virtual machines is performed by receiv-
ing a request to clone a source data object (virtual machine).
A source block range of the source data object in a source
logical storage unit is determined. An empty data object in
the destination logical storage unit is created. A destination
block range of the empty data object in the destination
logical storage unit is determined. The source block range is
mapped to the destination block range. The source data
object is cloned based on the mapping.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings.

FIG. 1 illustrates an exemplary rapid cloning implemen-
tation according to an embodiment;

FIG. 2 is a block diagram of a rapid cloning environment
according to an embodiment;

FIG. 3 is a block diagram illustrating a memory in a
network storage system according to an embodiment;

FIG. 4 illustrates a flow diagram of a rapid cloning
method according to an embodiment;

FIG. 5 illustrates a flow diagram of a block range deter-
mination method according to an embodiment;

FIG. 6 illustrates a flow diagram of a block mapping
method according to an embodiment;

FIG. 7A illustrates a network storage system in which
rapid cloning of virtual machines on LUNs may be imple-
mented;

FIG. 7B illustrates a distributed or clustered architecture
for a network storage system in which rapid cloning of
virtual machines on LUNs may be implemented in an
alternative embodiment;

FIG. 8 is a block diagram of an illustrative embodiment
of an environment including a rapid cloning manager of
FIG. 8 in which the rapid cloning of virtual machines on
LUNs may be implemented; and

FIG. 9 illustrates an embodiment of the storage operating
system of FIG. 8 in which rapid cloning of virtual machines
on LUNs may be implemented.

DETAILED DESCRIPTION

In the following detailed description of embodiments of
the invention, reference is made to the accompanying draw-
ings in which like references indicate similar elements, and
in which is shown by way of illustration specific embodi-
ments in which the invention may be practiced. These
embodiments are described in sufficient detail to enable
those skilled in the art to practice the invention, and it is to
be understood that other embodiments may be utilized and
that logical, mechanical, electrical, functional, and other
changes may be made without departing from the scope of
the present invention. The following detailed description is,
therefore, not to be taken in a limiting sense, and the scope
of the present invention is defined only by the appended
claims.

US 9,483,202 B2

3

Embodiments are described for a rapid cloning of virtual
machines on LUNs. References in this specification to “an
embodiment”. “one embodiment”, or the like, mean that the
particular feature, structure or characteristic being described
is included in at least one embodiment of the present
invention. Occurrences of such phrases in this specification
do not necessarily all refer to the same embodiment, nor are
they necessarily mutually exclusive.

Rapid cloning of a source data object is performed by
determining a source block range of the source data object,
creating an empty data object in a destination logical storage
unit, determining a destination block range of the empty data
object in the destination logical storage unit, and mapping
the source block range to the destination block range of the
empty data object.

Cloning a file does not require a physical copy of data
involved, and is therefore a fast and time-efficient process.
Furthermore, the cloning of a file is performed off-host, and
therefore does not consume any resources from the host
itself. In one embodiment, a user requests a clone of a virtual
machine running on LUNs mapped to a Windows host. In an
alternate embodiment, a user requests provisioning virtual
machines (e.g., desktops) using a virtual machine template.
In another embodiment, a user requests conversion of a
physical machine to a virtual machine. In yet another
embodiment, a user requests a virtual machine to be moved
from one LUN to another LUN. Still in yet another alternate
embodiment, a user requests restoring a subset of files from
a LUN in a snapshot back to an original LUN.

FIG. 1 is an exemplary rapid cloning implementation
according to an embodiment. FIG. 2 is a block diagram of
a rapid cloning environment illustrating a detailed view of
host machine 110 and storage system 120 of FIG. 1. FIG. 3
is an exemplary memory of host machine 205 of FIG. 2.

Referring to FIG. 1, host machine 110 has access to
storage system 120, which provides access to data stored on
storage devices 130 and 150. A user of host machine 110
may request rapid cloning of a file, or data object, stored on
a storage device, such as file 140 on storage device 130. A
clone of the file is created and stored on a storage device,
such as cloned file 160 on storage device 150.

Referring to FIG. 2, rapid cloning environment 200
includes physical host machine 205 and network storage
system 240. In one embodiment, network storage system
240 is a storage area network (SAN). Network storage
system 240 may include storage server 245 configured to
store and retrieve data. Network storage system 240 operates
to store and manage shared storage objects (e.g., files) in a
set of mass storage devices, such as magnetic or optical
disks or tapes, or flash drives. The mass storage devices may
be organized into one or more volumes of a Redundant
Array of Inexpensive Disks (RAID). In a SAN context,
storage server 245 provides block-level access to stored
data, rather than file-level access.

Host machine 205 includes host machine operating sys-
tem 210, such as for example, Microsoft Windows Server®
2008 R2. Host machine operating system 210 may include
rapid cloning software 215 for cloning of a file, or data
object. For example, host machine operating system 210
may clone source file 225 to cloned file 230. Host machine
operating system 210 may include a hypervisor, such as for
example, Hyper-V in the Microsoft Windows Server® 2008
R2 operating system. Host machine operating system 210
enables host machine 205 to host one or more virtual
machines (not shown), each running its own operating
system. In one embodiment, host machine 205 is also
running virtualization software 220 which may enable the

15

30

40

45

4

provisioning of storage from network storage system 240
through the virtual machines. In one embodiment, virtual-
ization software includes NetApp® SnapDrive™ for Win-
dows, developed by NetApp, Inc. of Sunnyvale, Calif.

Network storage system 240 includes one or more Logical
Unit Numbers (LUNSs) 255, or logical storage units. Storage
server operating system 250 running on storage server 245
of network storage system 240 creates LUN 255 and maps
it to host machine 205. Mapping a LUN to host machine 205
may include writing an identifier of LUN 255 into a data
structure representing the storage resources associated with
host machine 205.

In network environment 200, a user may request to clone
a file, such as source file 225. Rapid cloning software 215
determines block range of source file 260 in LUN 250.
Cloned file 230 is created in host machine 205. Block range
of cloned file 265 is determined. In one embodiment, block
range of cloned file 265 is in the same LUN (LUN 255) as
the block range of source file 260. In an alternate embodi-
ment, block range of cloned file 265 is in a different LUN
than LUN 255. Once block range of source file 260 and
block range of cloned file 265 are determined, block range
of source file 260 is mapped to block range of cloned file
265. Source file 225 is cloned to cloned file 230 using the
mapping of block range of source file 260 to block range of
cloned file 265. Once cloned file 230 is cloned, it is
accessible to host machine operating system 210.

FIG. 3 is a memory 300 according to an embodiment.
Memory 300 contains operating system 310, source data
object 350, and cloned data object 360. Within operating
system 310, there is block range determiner 320, data object
creator 330, and data cloner 340. In other embodiments, the
software components 320, 330, and 340 can be separate
from and not part of an operating system. Although memory
300 has been shown as a single memory, this is just one
illustrative embodiment. In alternate embodiments, memory
300 can be split into more than one memory. Although
cloned data object 360 has been shown as stored within
memory 300, this is just one illustrative embodiment. In
alternate embodiments, cloned data object 360 may be
stored within a different storage device.

Block range determiner 320, data object creator 330, and
data cloner 340 are used by operating system 310 to imple-
ment rapid cloning of virtual machines on LLUNs. Block
range determiner 320 determines a block range in memory
310 for source data object 350 and a block range in memory
310 for cloned data object 360. Data object creator 330
creates an empty data object such as cloned data object 360.
Data cloner 340 clones source data object 350 and stores the
cloned data object in cloned data object 360.

FIGS. 4-6 are flow charts illustrating methods of rapid
cloning. Referring to FIG. 4, the method 400 may be
performed by processing logic that comprises hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (e.g. instructions run on a processing
device to perform hardware simulation), or a combination
thereof, represented by processing instruction blocks 405-
450 in FIG. 4. In certain embodiments, method 400 may be
performed by storage system 120 of FIG. 1, storage oper-
ating system 280 of FIG. 2, and operating system 310 of
FIG. 3.

A request to clone a data object is received at block 405.
The request may be received from a user or administrator
that selects one or more source data objects in a first system
running a first operating system (e.g., Windows™, etc.). The
source data objects are logically stored in a source logical
storage unit (e.g., LUN) in a storage system running a

US 9,483,202 B2

5

storage operating system (e.g., NetApp® Data ONTAP™).
The source logical storage unit in the storage system is
mapped to the first system running the first operating system.
The request may include a number of clones that the user
desires to create of the source data object. In one embodi-
ment, the request includes only the source data object and
does not include a destination logical storage unit for the
clones of the source data object. In this embodiment, the
destination logical storage unit for the clone(s) of the source
data object is set to the same logical storage unit (e.g., LUN)
as the source logical storage unit of the source data object.
In an alternate embodiment, the user may request a specific
destination logical storage unit for the clone(s) of the source
data object. The user may specify that the destination logical
storage unit be mapped to a second system. In this embodi-
ment, the destination logical storage unit can be in the same
storage system as the first system. The clone(s) of the source
data object are stored in the destination logical storage unit.

At block 410, the method determines if the host of the
source data object is the same as the host of the destination
for the clone. The determination may be made by 1) obtain-
ing the host information for the host of the source logical
storage unit storing the source data object, 2) obtaining the
host information for the destination logical storage unit to
store the clone, and 3) performing a comparison. In one
embodiment, Windows Management Instrumentation™
(WMI) is used to obtain the host information. In an alternate
embodiment, an API may be used obtain the host informa-
tion. In one embodiment, the results of the comparison are
stored for future use. In an alternate embodiment, the results
of the comparison are not stored. If the host of the source
data object is not equivalent to the host of the destination for
the clone, the destination logical storage unit is mapped to
the host of the data object to be cloned (the source logical
storage unit) at block 415. In one embodiment, prior to
mapping the destination logical storage unit to the host of the
source logical storage unit, the destination logical storage
unit is unmapped from a host of the destination logical unit.
If the host of the source data object is equivalent to the host
of the destination for the clone, the method does not need to
perform a mapping, and the method proceeds to block 420.

At block 420, the method determines one or more block
ranges of the source data object in the source logical storage
unit. The determination is made as described below in
conjunction with FIG. 5. The determination provides an
array of source block ranges that includes a starting logical
block address (LBA) and a block count (number of blocks)
occupied by the source data object starting from the starting
LBA for each element in the array (each source block range).

An empty destination data object is created in the desti-
nation logical storage unit at block 425. In one embodiment,
the empty data object has a larger storage allocation than the
data object to be cloned in order to provide storage for
metadata associated with the cloned object. In an alternate
embodiment, the size of the empty data object is equivalent
to the size of the source data object.

Once the empty destination data object is created, the
method determines a block range of the empty destination
data object in the destination logical storage unit at block
430. The determination is made as described below in
conjunction with FIG. 5. The determination provides an
array of destination block ranges that includes a destination
LBA and a block count (number of blocks) occupied by the
destination data object starting from the destination LBA for
each element in the array (each destination block range).

Mapping the source block range to the destination block
range is performed at block 435. The data object to be cloned

10

15

20

25

30

35

40

45

50

55

60

65

6

or the empty destination data object may be fragmented in
the source and destination file system (e.g., NTFS) and the
source and destination fragments may be of unequal sizes.
Therefore, the fragments of the data object to be cloned may
be mapped to the fragments of the empty destination data
object. The mapping is performed as described below in
conjunction with FIG. 6.

At block 440, the blocks of the source data object in the
source logical storage unit are cloned to the empty data
object in the destination logical storage unit based on the
mapping determined at block 435.

At block 445, the method determines if the host of the
source logical storage unit of the data object to be cloned is
the same as the host of the destination for the clone. In one
embodiment, the determination may be made by 1) obtain-
ing the host information for the host of the source logical
storage unit storing the data object to be cloned, 2) obtaining
the host information for the destination logical storage unit
to store the clone, and 3) performing a comparison. In one
embodiment, Windows Management Instrumentation™
(WMI) is used to obtain the host information. In an alternate
embodiment, an API may be used obtain the host informa-
tion. In an alternate embodiment, a previously made deter-
mination stored in memory is obtained.

Ifthe host of the source data object is not equivalent to the
host of the destination for the clone, the destination logical
storage unit is mapped to the desired destination host for the
clone at block 450. In one embodiment, the destination
logical storage unit is mapped to the desired destination host
for the clone by using a Zephyr API (ZAPI™), a proprietary
API of NetApp® and a WMI or Windows Virtual Disk
Service API. As part of the mapping, the destination logical
storage unit may first be disconnected from the host of the
data object to be cloned (the source logical storage unit). If
the host of the source data object is equivalent to the host of
the destination for the clone, the method ends.

The cloning described above may be performed by using
a cloning API. In one example, a Zephyr AP (ZAPI™) for
Single Instance Storage (SIS) clone, a proprietary API of
NetApp®, is used to clone the data. In this example, an API,
such as ZAPI, may provide for marshalling of API name and
input parameters using XML (extensible markup language),
with input parameters being typed and the contents of the
XML being independent of the programming language and
architecture on both client and server sides of a transaction,
and with the server returning values from the invocation of
the API marshaled in the same format as the input. The SIS
clone ZAPI provides a method of reducing storage device
(e.g., disk) space by eliminating duplicate data blocks on a
flexible volume. Only a single instance of each unique data
block is stored. The SIS clone ZAPI requires as input an
array of block ranges to be cloned. Each block range
contains an LBA for a source block, an LBA for a destination
block, and a block count (a number of blocks to be cloned).

FIG. 5 is a flow chart illustrating a method 500 of
determining a block range (as per instruction blocks 420 and
430) according to an embodiment. The method 500 may be
performed by processing logic that comprises hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (e.g., instructions run on a processing
device to perform hardware simulation), or a combination
thereof, represented by processing instruction blocks 510-
560 in FIG. 5. In certain embodiments, method 500 may be
performed by rapid cloning software 215 of FIG. 2, or block
range determiner 320 of FIG. 3.

Referring to FIG. 5, the method 500 determines, or
acquires, one or more extents associated with the data object

US 9,483,202 B2

7

in the host file system at block 510. An extent is a contiguous
area of storage in a file system that is reserved for a data
object. In one embodiment, the determination is made by
calling a file system control operation, such as FSCTL_GE-
T_RETRIEVAL_POINERS. The call for the file system
control operation may require a file handle, in which case the
data object may be passed as an input to the operation. The
file handle can be obtained using an API. For example, the
CreateFile API can be used to obtain the file handle with the
path of the data object as input. The file system control
operation returns one or more extents associated with the
data object. Each extent includes a logical cluster number
and a size for each of the extents. The extents are relative to
the beginning of a volume device seen by a host operating
system.

At block 520, the method determines the starting offset on
the storage device (starting storage device offset) where the
volume device containing the data object begins. In one
embodiment, the starting sector offset on the storage device
is obtained by calling a file system control operation, such
as IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS.
The call for the file system control operation may require a
file handle, in which case the data object may be passed as
an input to the operation. The file handle can be obtained
using an API. For example, the CreateFile API can be used
to obtain the file handle with the path of the data object as
input. The method 500 executes a loop to determine an LBA
block count beginning at block 530, ending at block 560, and
performing the processes represented by blocks 540 and
550.

Atblock 540, a product is generated (e.g., multiply) of the
logical cluster number for an extent and a number of sectors
per cluster and the product is added to the starting sector
offset to determine the start LBA of that extent. The start
LBA may be stored in an array of start LBAs. In one
embodiment, the number of sectors per cluster is acquired
from the file system by calling a file system control opera-
tion.

At block 550, the block count for the extent is determined.
In one embodiment, the size of the extent determined at
block 510 is in units of clusters. The block count is calcu-
lated by converting the size of the extent from clusters into
sectors. In one embodiment, this conversion is made by
obtaining the sectors per cluster for the logical storage unit
and generating a product of the size of the extent (in sector)
and the sectors per cluster. In one embodiment, the sectors
per cluster may be obtained by calling a file system control
operation, such as the Windows API GetDiskFreeSpace. The
product is the number of blocks occupied by the data object
beginning at each start LBA. The number of blocks for each
start LBA may be stored in the array of start LBAs.

FIG. 6 is a flow chart illustrating a method 600 of block
mapping (as per instruction block 435 in FIG. 4) according
to an embodiment. The method 600 may be performed by
processing logic that comprises hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (e.g., instructions run on a processing device to per-
form hardware simulation), or a combination thereof, rep-
resented by processing instruction blocks 605-675 in FIG. 6.
In certain embodiments, method 600 may be performed by
rapid cloning software 215 of FIG. 2 or data cloner 340 of
FIG. 3.

Referring to FIG. 6, the method 600 performs an initial-
ization at block 605. The initialization is performed by
initializing a source range flag, a destination range flag, a
current source range, a current destination range, a number
of source bytes, a number of destination bytes, and a list of

15

20

25

30

40

45

8

cloning ranges to be cloned. The initialization can include
setting a source range flag to be complete and setting a
destination range flag to be complete. The initialization can
include initializing a current source range to the first source
LBA element in a source block ranges array (e.g., array of
source block ranges of FIG. 4 generated at block 420). The
initialization can include initializing a current destination
range to the first destination LBA element in a destination
block range array (e.g., array of destination block ranges of
FIG. 4 generated at block 430). The initialization can include
initializing a variable for the number of source bytes to the
first block count element in the source block ranges array
(e.g., array of source block ranges of FIG. 4). The initial-
ization can include initializing a number of destination bytes
to the first block count element in the destination block
ranges array (e.g., array of destination block ranges of FIG.
4). The initialization can include initializing a list of ranges
to be cloned to empty.

The method 600 executes a loop to map source ranges to
destination ranges by determining if there are more source
ranges in source block ranges array or more destination
ranges in destination block ranges array beginning at block
610, ending at block 675, and performing the processes
represented by blocks 615 through 670.

At block 615, a cloning block range is computed. The
cloning block range consists of a source LBA, a destination
block LBA, and a number of blocks to clone. The source
LBA can be determined by determining if the source range
flag is set to be complete. If the source range flag is set to
be complete, the source LBA is set to be the current source
range. If the source range is not marked as complete, the
source LBA is the sum of the current source range and a
number of blocks to clone of the previous cloning range to
be cloned. The destination LBA can be determined by
determining if the destination range flag is set to be com-
plete. If the destination range flag is set to be complete, the
destination LBA is set to be the current destination range. If
the destination range is not set to be complete, the destina-
tion LBA is the sum of the current destination LBA and a
number of blocks to clone of the previous cloning range to
be cloned. The number of blocks to clone is the minimum of
the source bytes and the number of destination bytes.

The computed cloning block range (computed at block
615) is included in a list of cloning block ranges to be cloned
at block 620. The method compares the number of source
bytes to the number of destination bytes at block 625.

If the number of source bytes is less than the number of
destination bytes, the source bytes from more than one
source range (e.g., current and next range) must be mapped
to the current destination range. If the number of source
bytes is less than the number of destination bytes, the
method sets the current source range to be the next source
LBA element in the source block ranges array at block 630.

The source bytes and the destination bytes are updated at
block 635. The source bytes are set to be the current block
count element in the source block ranges array (correspond-
ing to the current source LBA element). The destination
bytes are determined by subtracting the number of blocks to
clone from the current value of the destination bytes. The
source range flag is marked complete and the destination
range flag is marked incomplete at block 640.

If the number of source bytes is equal to the number of
destination bytes, the source bytes must be mapped to the
destination bytes, and the method sets the current source
range to be the next source LBA element in the source block

US 9,483,202 B2

9

ranges array and the current destination range to be the next
destination LBA element in the destination block ranges
array at block 645.

The source bytes and the destination bytes are updated at
block 650. The source bytes are determined by subtracting
the number blocks to clone from the current value of the
source bytes. The destination bytes are updated by subtract-
ing the number of blocks to clone from the current value of
the destination bytes. The source range flag is marked
complete and the destination range flag is marked complete
at block 655.

If the number of source bytes for the current source range
is greater than the number of destination bytes for the current
destination range, the source bytes must be mapped to more
than one destination range. If the number of source bytes is
greater than the number of destination bytes, the method sets
the current destination range to be the next destination LBA
element in the destination block ranges array at block 660.

The source bytes and the destination bytes are updated at
block 665. The source bytes are determined by subtracting
the number blocks to clone from the current value of the
source bytes. The destination bytes are set to the current
block count element in the destination block ranges array
(corresponding to the current destination L. BA element). The
source range flag is marked incomplete and the destination
range flag is marked complete at block 670.

FIG. 7A shows a network storage system 700 in which
rapid cloning can be implemented in one embodiment.
Storage servers 710 (storage servers 710A, 710B), such as
storage system 120 of FIG. 1, each manage multiple storage
units 770 (storage 770A, 770B) that include mass storage
devices, such as storage device 130 and 150 of FIG. 1. These
storage servers provide data storage services to one or more
clients 702 through a network 730. Network 730 may be, for
example, a local area network (LAN), wide area network
(WAN), metropolitan area network (MAN), global area
network such as the Internet, a Fibre Channel fabric, or any
combination of such interconnects. Each of clients 702 may
be, for example, a conventional personal computer (PC),
server-class computer, workstation, handheld computing or
communication device, or other special or general purpose
computer, such as host machine 110 of FIG. 1.

Storage of data in storage units 770 is managed by storage
servers 710 which receive and respond to various read and
write requests from clients 702, directed to data stored in or
to be stored in storage units 770. Storage units 770 constitute
mass storage devices which can include, for example, flash
memory, magnetic or optical disks, or tape drives, illustrated
as disks 771 (771A, 771B). The storage devices 771 can
further be organized into arrays (not illustrated) implement-
ing a Redundant Array of Inexpensive Disks/Devices
(RAID) scheme, whereby storage servers 710 access storage
units 770 using one or more RAID protocols known in the
art.

Storage servers 710 can provide file-level service such as
used in a network-attached storage (NAS) environment,
block-level service such as used in a storage area network
(SAN) environment, a service which is capable of providing
both file-level and block-level service, or any other service
capable of providing other data access services. Although
storage servers 710 are each illustrated as single units in
FIG. 7A, a storage server can, in other embodiments,
constitute a separate network element or module (an
“N-module”) and disk element or module (a “D-module”).
In one embodiment, the D-module includes storage access
components for servicing client requests. In contrast, the
N-module includes functionality that enables client access to

30

35

40

45

55

10

storage access components (e.g., the D-module) and may
include protocol components, such as Common Internet File
System (CIFS), Network File System (NFS), or an Internet
Protocol (IP) module, for facilitating such connectivity.
Details of a distributed architecture environment involving
D-modules and N-modules are described further below with
respect to FIG. 7B and embodiments of an D-module and an
N-module are described further below with respect to FIG.
9.

In yet other embodiments, storage servers 710 are referred
to as network storage subsystems. A network storage sub-
system provides networked storage services for a specific
application or purpose. Examples of such applications
include database applications, web applications, Enterprise
Resource Planning (ERP) applications, etc., e.g., imple-
mented in a client. Examples of such purposes include file
archiving, backup, mirroring, etc., provided, for example, on
archive, backup, or secondary storage server connected to a
primary storage server. A network storage subsystem can
also be implemented with a collection of networked
resources provided across multiple storage servers and/or
storage units.

In the embodiment of FIG. 7A, one of the storage servers
(e.g., storage server 710A) functions as a primary provider
of data storage services to client 702. Data storage requests
from client 702 are serviced using disks 771A organized as
one or more storage objects. A secondary storage server
(e.g., storage server 710B) takes a standby role in a mirror
relationship with the primary storage server, replicating
storage objects from the primary storage server to storage
objects organized on disks of the secondary storage server
(e.g., disks 770B). In operation, the secondary storage server
does not service requests from client 702 until data in the
primary storage object becomes inaccessible such as in a
disaster with the primary storage server, such event consid-
ered a failure at the primary storage server. Upon a failure
at the primary storage server, requests from client 702
intended for the primary storage object are serviced using
replicated data (i.e. the secondary storage object) at the
secondary storage server.

It will be appreciate that in other embodiments, network
storage system 700 may include more than two storage
servers. In these cases, protection relationships may be
operative between various storage servers in system 700
such that one or more primary storage objects from storage
server 710A may be replicated to a storage server other than
storage server 710B (not shown in this figure). Secondary
storage objects may further implement protection relation-
ships with other storage objects such that the secondary
storage objects are replicated, e.g., to tertiary storage
objects, to protect against failures with secondary storage
objects. Accordingly, the description of a single-tier protec-
tion relationship between primary and secondary storage
objects of storage servers 710 should be taken as illustrative
only.

FIG. 7B illustrates a block diagram of a distributed or
clustered network storage system 720 which may implement
rapid cloning in one embodiment. System 720 may include
storage servers implemented as nodes 710 (nodes 710A,
710B) which are each configured to provide access to
storage devices 771. In FIG. 7B, nodes 710 are intercon-
nected by a cluster switching fabric 725, which may be
embodied as an Ethernet switch.

Nodes 710 may be operative as multiple functional com-
ponents that cooperate to provide a distributed architecture
of system 720. To that end, each node 710 may be organized
as a network element or module (N-module 721A, 721B), a

US 9,483,202 B2

11

disk element or module (D-module 722A, 722B), and a
management element or module (M-host 723A, 723B). In
one embodiment, each module includes a processor and
memory for carrying out respective module operations. For
example, N-module 721 may include functionality that
enables node 710 to connect to client 702 via network 730
and may include protocol components such as a media
access layer, Internet Protocol (IP) layer, Transport Control
Protocol (TCP) layer, User Datagram Protocol (UDP) layer,
and other protocols known in the art.

In contrast, D-module 722 may connect to one or more
storage devices 771 via cluster switching fabric 725 and may
be operative to service access requests on devices 770. In
one embodiment, the D-module 722 includes storage access
components such as a storage abstraction layer supporting
multi-protocol data access (e.g., Common Internet File
System protocol, the Network File System protocol, and the
Hypertext Transfer Protocol), a storage layer implementing
storage protocols (e.g., RAID protocol), and a driver layer
implementing storage device protocols (e.g., Small Com-
puter Systems Interface protocol) for carrying out operations
in support of storage access operations. In the embodiment
shown in FIG. 7B, a storage abstraction layer (e.g., file
system) of the D-module divides the physical storage of
devices 770 into storage objects. Requests received by node
710 (e.g., via N-module 721) may thus include storage
object identifiers to indicate a storage object on which to
carry out the request.

Also operative in node 710 is M-host 723 which provides
cluster services for node 710 by performing operations in
support of a distributed storage system image, for instance,
across system 720. M-host 723 provides cluster services by
managing a data structure such as a RDB 724 (RDB 724A,
RDB 724B) which contains information used by N-module
721 to determine which D-module 722 “owns” (services)
each storage object. The various instances of RDB 724
across respective nodes 710 may be updated regularly by
M-host 723 using conventional protocols operative between
each of the M-hosts (e.g., across network 730) to bring them
into synchronization with each other. A client request
received by N-module 721 may then be routed to the
appropriate D-module 722 for servicing to provide a dis-
tributed storage system image.

It should be noted that while FIG. 7B shows an equal
number of N- and D-modules constituting a node in the
illustrative system, there may be different number of N- and
D-modules constituting a node in accordance with various
embodiments of rapid cloning. For example, there may be a
number of N-modules and D-modules of node 710A that
does not reflect a one-to-one correspondence between the N-
and D-modules of node 710B. As such, the description of a
node comprising one N-module and one D-module for each
node should be taken as illustrative only.

FIG. 8 is a block diagram of an embodiment of a storage
server, such as storage servers 710A and 710B of FIG. 7A,
embodied as a general or special purpose computer includ-
ing a processor 802, a memory 810, a network adapter 820,
a user console 812 and a storage adapter 840 interconnected
by a system bus 850, such as a convention Peripheral
Component Interconnect (PCI) bus.

Memory 810 includes storage locations addressable by
processor 802, network adapter 820 and storage adapter 840
for storing processor-executable instructions and data struc-
tures associated with rapid cloning. Storage operating sys-
tem 814, portions of which are typically resident in memory
810 and executed by processor 802, functionally organizes
the storage server by invoking operations in support of the

10

15

20

25

30

35

40

45

50

55

60

65

12

storage services provided by the storage server. It will be
apparent to those skilled in the art that other processing
means may be used for executing instructions and other
memory means, including various computer readable media,
may be used for storing program instructions pertaining to
the inventive techniques described herein. It will also be
apparent that some or all of the functionality of the processor
802 and executable software can be implemented by hard-
ware, such as integrated currents configured as program-
mable logic arrays, ASICs, and the like.

Network adapter 820 comprises one or more ports to
couple the storage server to one or more clients over
point-to-point links or a network. Thus, network adapter 820
includes the mechanical, electrical and signaling circuitry
needed to couple the storage server to one or more client
over a network. Each client may communicate with the
storage server over the network by exchanging discrete
frames or packets of data according to pre-defined protocols,
such as TCP/IP.

Storage adapter 840 includes a plurality of ports having
input/output (I/0) interface circuitry to couple the storage
devices (e.g., disks) 870 to bus 821 over an 1/O interconnect
arrangement, such as a conventional high-performance, FC
or SAS link topology. Storage adapter 840 typically includes
a device controller (not illustrated) comprising a processor
and a memory for controlling the overall operation of the
storage units in accordance with read and write commands
received from storage operating system 814. As used herein,
data written by a device controller in response to a write
command is referred to as “write data,” whereas data read by
device controller responsive to a read command is referred
to as “read data.”

User console 812 enables an administrator to interface
with the storage server to invoke operations and provide
inputs to the storage server using a command line interface
(CLI) or a graphical user interface (GUI). In one embodi-
ment, user console 812 is implemented using a monitor and
keyboard.

When implemented as a node of a cluster, such as cluster
720 of FIG. 7B, the storage server further includes a cluster
access adapter 830 (shown in phantom) having one or more
ports to couple the node to other nodes in a cluster 825. In
one embodiment, Ethernet is used as the clustering protocol
and interconnect media, although it will apparent to one of
skill in the art that other types of protocols and interconnects
can by utilized within the cluster architecture.

FIG. 9 is a block diagram of a storage operating system,
such as storage operating system 814 of FIG. 8, that imple-
ments an embodiment of rapid cloning. The storage oper-
ating system comprises a series of software layers executed
by a processor, such as processor 802 of FIG. 8, and
organized to form an integrated network protocol stack or,
more generally, a multi-protocol engine 925 that provides
data paths for clients to access information stored on the
storage server using block and file access protocols.

Multi-protocol engine 925 includes a media access layer
912 of network drivers (e.g., gigabit Ethernet drivers) that
interface with network protocol layers, such as the IP layer
914 and its supporting transport mechanisms, the TCP layer
916 and the User Datagram Protocol (UDP) layer 915. A file
system protocol layer provides multi-protocol file access
and, to that end, includes support for the Direct Access File
System (DAFS) protocol 918, the NES protocol 920, the
CIFS protocol 922 and the Hypertext Transfer Protocol
(HTTP) protocol 924. A VI layer 926 implements the VI
architecture to provide direct access transport (DAT) capa-
bilities, such as RDMA, as required by the DAFS protocol

US 9,483,202 B2

13

918. An iSCSI driver layer 928 provides block protocol
access over the TCP/IP network protocol layers, while a FC
driver layer 930 receives and transmits block access requests
and responses to and from the storage server. In certain
cases, a Fibre Channel over Ethernet (FCoE) layer (not
shown) may also be operative in multi-protocol engine 925
to receive and transmit requests and responses to and from
the storage server. The FC and iSCSI drivers provide respec-
tive FC- and iSCSI-specific access control to the blocks and,
thus, manage exports of luns to either iSCSI or FCP or,
alternatively, to both iSCSI and FCP when accessing blocks
on the storage server.

The storage operating system also includes a series of
software layers organized to form a storage server 965 that
provides data paths for accessing information stored on
storage devices. Information may include data received from
a client, in addition to data accessed by the storage operating
system in support of storage server operations such as
program application data or other system data. Preferably,
client data may be organized as one or more logical storage
objects (e.g., volumes) that comprise a collection of storage
devices cooperating to define an overall logical arrange-
ment. In one embodiment, the logical arrangement may
involve logical volume block number (vbn) spaces, wherein
each volume is associated with a unique vbn.

File system 960 implements a virtualization system of the
storage operating system through the interaction with one or
more virtualization modules (illustrated as a SCSI target
module 935). SCSI target module 935 is generally disposed
between drivers 928, 930 and file system 960 to provide a
translation layer between the block (lun) space and the file
system space, where luns are represented as blocks. In one
embodiment, file system 960 implements a WAFL (write
anywere file layout) file system having an on-disk format
representation that is block-based using, e.g., 4 kilobyte
(KB) blocks and using a data structure such as index nodes
(“inodes™) to identify files and file attributes (such as cre-
ation time, access permissions, size and block location). File
system 960 uses files to store metadata describing the layout
of its file system, including an inode file, which directly or
indirectly references (points to) the underlying data blocks
of a file.

Operationally, a request from a client is forwarded as a
packet over the network and onto the storage server where
it is received at a network adapter. A network driver such as
layer 912 or layer 930 processes the packet and, if appro-
priate, passes it on to a network protocol and file access layer
for additional processing prior to forwarding to file system
960. There, file system 960 generates operations to load
(retrieve) the requested data from the disks if it is not
resident “in core”, i.e., in memory 810. If the information is
not in memory, file system 960 accesses the inode file to
retrieve a logical vbn and passes a message structure includ-
ing the logical vbn to the RAID system 980. There, the
logical vbn is mapped to a disk identifier and device block
number (disk,dbn) and sent to an appropriate driver of disk
driver system 990. The disk driver accesses the dbn from the
specified disk and loads the requested data block(s) in
memory for processing by the storage server. Upon comple-
tion of the request, the node (and operating system 900)
returns a reply to the client over the network.

It should be noted that the software “path” through the
storage operating system layers described above needed to
perform data storage access for the client request received at
the storage server adaptable to the teachings of the invention
may alternatively be implemented in hardware. That is, in an
alternate embodiment of the invention, a storage access

25

40

45

14

request data path may be implemented as logic circuitry
embodied within a field programmable gate array (FPGA) or
an application specific integrated circuit (ASIC). This type
of hardware implementation increases the performance of
the storage service provided by the storage server in
response to a request issued by a client. Moreover, in another
alternate embodiment of the invention, the processing ele-
ments of adapters 820, 840 may be configured to offload
some or all of the packet processing and storage access
operations, respectively, from processor 802, to thereby
increase the performance of the storage service provided by
the storage server. It is expressly contemplated that the
various processes, architectures and procedures described
herein can be implemented in hardware, firmware or soft-
ware.

When implemented in a cluster, data access components
of'the storage operating system may be embodied as D-mod-
ule 950 for accessing data stored on disk. In contrast,
multi-protocol engine 925 may be embodied as N-module
910 to perform protocol termination with respect to a client
issuing incoming access over the network, as well as to
redirect the access requests to any other N-module in the
cluster. A cluster services system 936 may further implement
an M-host (e.g., M-host 901) to provide cluster services for
generating information sharing operations to present a dis-
tributed file system image for the cluster. For instance,
media access layer 912 may send and receive information
packets between the various cluster services systems of the
nodes to synchronize the replicated databases in each of the
nodes.

In addition, a cluster fabric (CF) interface module 940
(CF interface modules 940A, 940B) may facilitate intra-
cluster communication between N-module 910 and D-mod-
ule 950 using a CF protocol 970. For instance, D-module
950 may expose a CF application programming interface
(API) to which N-module 910 (or another D-module not
shown) issues calls. To that end, CF interface module 940
can be organized as a CF encoder/decoder using local
procedure calls (LPCs) and remote procedure calls (RPCs)
to communicate a file system command to between D-mod-
ules residing on the same node and remote nodes, respec-
tively.

Rapid cloning of virtual machines in LUNs requires
translating the host machine’s view of a file to an LBA range
used for cloning by the storage system and may be per-
formed by rapid cloner 995 in file system 960. A source
block range in a source logical storage unit in RAID system
980 is determined. An empty data object is created in a
destination logical storage unit in RAID system 980. A
destination block range of the empty data object is deter-
mined. The source data object is cloned to the empty data
object.

Although the present invention is shown herein to imple-
ment rapid cloning within the storage operating system, it
will be appreciated that rapid cloning may be implemented
in other modules or components of the storage server in
other embodiments. In addition, rapid cloning may be imple-
mented as one or a combination of a software-executing
processor, hardware or firmware within the storage server.
As such, rapid cloning may directly or indirectly interface
with modules of the storage operating system in accordance
with teachings of the present invention.

As used herein, the term “storage operating system”
generally refers to the computer-executable code operable
on a computer to perform a storage function that manages
data access and may implement data access semantics of a
general purpose operating system. The storage operating

US 9,483,202 B2

15

system can also be implemented as a microkernel, an
application program operating over a general-purpose oper-
ating system, such as UNIX® or Windows XP®, or as a
general-purpose operating system with configurable func-
tionality, which is configured for storage applications as
described herein.

In addition, it will be understood to those skilled in the art
that the invention described herein may apply to any type of
special-purpose (e.g., file server or storage serving appli-
ance) or general-purpose computer, including a standalone
computer or portion thereof, embodied as or including a
storage system. Moreover, the teachings of this invention
can be adapted to a variety of storage system architectures
including, but not limited to, a network-attached storage
environment, a storage area network and disk assembly
directly-attached to a client or host computer. The term
“storage system” should therefore be taken broadly to
include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems. It should be noted that while
this description is written in terms of a write anywhere file
system, the teachings of the present invention may be
utilized with any suitable file system, including conventional
write in place file systems.

In practice, the methods 400, 500, and 600 may constitute
one or more programs made up of computer-executable
instructions. Describing the methods with reference to the
flowchart in FIGS. 4, 5, and 6 enables one skilled in the art
to develop such programs, including such instructions to
carry out the operations (acts) represented by logical blocks
400 until 450, 500 until 560, and 600 until 680 on suitably
configured computers (the processor of the computer execut-
ing the instructions from computer-readable media). The
computer-executable instructions may be written in a com-
puter programming language or may be embodied in firm-
ware logic or in hardware circuitry. If written in a program-
ming language conforming to a recognized standard, such
instructions can be executed on a variety of hardware
platforms and for interface to a variety of operating systems.
In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as
described herein. Furthermore, it is common in the art to
speak of software, in one form or another (e.g., program,
procedure, process, application, module, logic . . .), as
taking an action or causing a result. Such expressions are
merely a shorthand way of saying that execution of the
software by a computer causes the processor of the computer
to perform an action or produce a result. It will be further
appreciated that more or fewer processes may be incorpo-
rated into the method illustrated in FIGS. 400, 500, and 600
without departing from the scope of the invention and that
no particular order is implied by the arrangement of blocks
shown and described herein.

Rapid cloning of virtual machines on LUNs has been
described. Although specific embodiments have been illus-
trated and described herein, it will be appreciated by those
of ordinary skill in the art that any arrangement which is
determined to achieve the same purpose may be substituted
for the specific embodiments shown. This application is
intended to cover any adaptations or variations of the present
invention.

Moreover, the description of FIGS. 7A-7B is intended to
provide an overview of computer hardware and other oper-
ating components suitable for performing the methods of the
invention described above, but is not intended to limit the

10

15

20

25

30

35

40

45

50

60

65

16

applicable environments. One of skill in the art will imme-
diately appreciate that the invention can be practiced with
other computer system configurations. The invention can
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network.

It will be readily apparent to one of skill, that input/output
devices, such as a keyboard, a pointing device, and a display,
may be coupled to the storage server. These conventional
features have not been illustrated for sake of clarity.

The term “memory” as used herein is intended to encom-
pass all volatile storage media, such as dynamic random
access memory (DRAM) and static RAM (SRAM). Com-
puter-executable instructions can be stored on non-volatile
storage devices, such as magnetic hard disk, an optical disk,
and are typically written, by a direct memory access process,
into memory during execution of software by a processor.
One of skill in the art will immediately recognize that the
term “computer-readable storage medium” includes any
type of volatile or non-volatile storage device that is acces-
sible by a processor.

Therefore, it is manifestly intended that this invention be
limited only by the following claims and equivalents
thereof.

What is claimed is:

1. A computerized method comprising:

receiving a request to clone a data object stored in a first

logical storage unit to a second logical storage unit;

determining a host of the first logical storage unit and a

host of the second logical storage unit at a time of the
request;
when the host of the first logical storage unit is different
than the host of the second logical storage unit at the
time of the request, mapping the second logical storage
unit to the host of the first logical storage unit;

determining a first block range of the data object in the
first logical storage unit;

creating an empty data object in the second logical storage

unit while mapped to the host of the first logical storage
unit;

determining a second block range of the empty data object

in the second logical storage unit;

generating a mapping of the first block range to the second

block range;

cloning the data object to the empty data object based on

the mapping of the first block range to the second block
range; and

when the host of the first logical storage unit is different

than the host of the second logical storage unit at the
time of the request, remapping, after the cloning is
complete, the second logical storage unit from the host
of the first logical storage unit at the time of the request
to the host of the second logical storage unit at the time
of the request.

2. The method of claim 1, wherein the first block range
comprises a starting logical block address and a block count
indicating a number of storage blocks occupied by the data
object.

3. The method of claim 1, wherein the determining the
first block range comprises:

determining one or more storage device offsets for the

data object; and

for a first storage device offset of the one or more storage

device offsets, determining a number of clone blocks
from the first storage device offset.

4. The method of claim 3, wherein the determining one or
more storage device offsets for the data object comprises:

US 9,483,202 B2

17

determining an extent associated with the data object,
wherein the extent comprises a logical cluster number;

determining a starting offset on a storage device compris-
ing the first logical storage unit; and

deriving the first storage device offset from the logical

cluster number and the starting offset.

5. The method of claim 3, wherein the determining a
number of clone blocks from the first storage device offset
comprises:

acquiring a size of an extent associated with the data

object;

acquiring a number of sectors per cluster; and

determining the number of clone blocks based on the size

of the extent and the number of sectors per cluster.

6. The method of claim 1, wherein the mapping of the first
block range to the second block range comprises:

computing a cloning range based on the first block range

and the second block range; and

comparing a number of bytes in the first block range to a

number of bytes in the second block range.
7. The method of claim 1, wherein the first logical storage
unit comprises a first plurality of contiguous storage areas
and the second logical storage unit comprises a second
plurality of contiguous storage areas and wherein the gen-
erating the mapping of the first block range to the second
block range comprises:
generating a plurality of entries in a data structure,
wherein each entry of the plurality of entries is created
to indicate a storage area of the first plurality of
contiguous storage areas as a source for cloning, a
storage area of the second plurality of contiguous
storage areas as a destination for the cloning, and a
number of blocks to be cloned from the source to the
destination.
8. A non-transitory computer readable medium having
stored thereon machine executable code which when
executed by at least one machine, causes the machine to:
receive a clone request to clone a data object stored in a
first logical storage unit to a second logical storage unit;

determine a host of the first logical storage unit and a host
of the second logical storage unit at a time of the clone
request;
when the host of the first logical storage unit is different
than the host of the second logical storage unit at the
time of the clone request, map the second logical
storage unit to the host of the first logical storage unit;

determine a first plurality of extents for the data object
after receipt of the clone request, wherein the first
plurality of extents are associated with the first logical
storage unit;

create an empty data object with a second plurality of

extents associated with the second logical storage unit
after receipt of the clone request, wherein the second
plurality of extents are at least a same size as the first
plurality of extents for the data object;

generate a mapping of the first plurality of extents to the

second plurality of extents that accounts for variations
in range of the extents;

clone data of the first plurality of extents to the second

plurality of extents in accordance with the mapping of
the first plurality of extents to the second plurality of
extents; and

when the host of the first logical storage unit is different

than the host of the second logical storage unit at the
time of the clone request, remap, after the data object
is cloned, the second logical storage unit from the host
of the first logical storage unit at the time of the clone

20

40

45

50

55

65

18

request to the host of the second logical storage unit at
the time of the clone request.

9. The non-transitory computer readable medium of claim
8, wherein the first plurality of extents correspond to a
contiguous area of storage that is reserved for the data
object.

10. The non-transitory computer readable medium of
claim 8, wherein each extent of the first plurality of extents
comprises a logical cluster number and a cluster size.

11. The non-transitory computer readable medium of
claim 8, wherein the machine executable code causes the
machine to determine a first block range of the data object
in the first logical storage unit.

12. The non-transitory computer readable medium of
claim 11, wherein a first extent of the first plurality of extents
comprises a logical cluster number and determining the first
block range comprises:

determining a starting offset on a storage device compris-

ing the first logical storage unit;

deriving a first storage device offset from the logical

cluster number and the starting offset; and
determining a number of clone blocks from the first
storage device offset.

13. The non-transitory computer readable medium of
claim 8, wherein the machine executable code causes the
machine to generate a plurality of entries in a data structure,
wherein each of the plurality of entries is created to indicate
an extent of the first plurality of extents as a source for
cloning, an extent of the second plurality of extents as a
destination for the cloning, and a number of blocks to be
cloned from the source to the destination.

14. A storage server comprising:

a processor;

a network interface; and

a non-transitory machine readable storage medium having

program instructions stored thereon, the program

instructions executable by the processor to cause the

storage server to:

receive a clone request to clone a data object stored in
a first logical storage unit to a second logical storage
unit;

determine a host of the first logical storage unit and a
host of the second logical storage unit at a time of the
clone request;

when the host of the first logical storage unit is different
than the host of the second logical storage unit at the
time of the clone request, map the second logical
storage unit to the host of the first logical storage
unit;

determine a first plurality of extents for the data object
after receipt of the clone request over the network
interface, wherein the first plurality of extents are
associated with the first logical storage unit;

create an empty data object with a second plurality of
extents associated with the second logical storage
unit also after receipt of the clone request over the
network interface, wherein the second plurality of
extents are at least a same size as the first plurality of
extents for the data object;

generate a mapping of the first plurality of extents to the
second plurality of extents that accounts for varia-
tions in range of the extents;

clone data of the first plurality of extents to the second
plurality of extents in accordance with the mapping
of the first plurality of extents to the second plurality
of extents; and

US 9,483,202 B2

19

when the host of the first logical storage unit is different
than the host of the second logical storage unit at the
time of the clone request, remap, after the data object
is cloned, the second logical storage unit from the
host of the first logical storage unit at the time of the
clone request to the host of the second logical storage
unit at the time of the clone request.

15. The storage server of claim 14, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to communicate an identifier of the second logical
storage unit at the time of the clone request to the host of the
first logical storage unit at the time of the clone request.

16. The storage server of claim 15, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to determine whether the host of the first logical
storage unit at the time of the clone request is different than
the host of the second logical storage unit at the time of the
clone request based upon the identifier.

17. The storage server of claim 14, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to direct the host of the second logical storage unit at
the time of the clone request to indicate that the second

10

15

20

20

logical storage unit is no longer mapped thereto after map-
ping the second logical storage unit to the host of the first
logical storage unit.

18. The storage server of claim 14, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to send, after the data object is cloned, an identifier of
the second logical storage unit to the host of the second
logical storage unit at the time of the clone request.

19. The storage server of claim 14, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to generate a plurality of entries in a data structure,
wherein each of the plurality of entries is created to indicate
an extent of the first plurality of extents as a source for
cloning, an extent of the second plurality of extents as a
destination for the cloning, and a number of blocks to be
cloned from the source to the destination.

20. The storage server of claim 18, wherein the non-
transitory machine readable storage medium has program
instructions executable by the processor to cause the storage
server to remap the second logical storage unit to the host of
the second logical storage unit at the time of the clone
request based upon the identifier.

#* #* #* #* #*

